Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Two-stage stochastic fleet and battery sizing with routing optimization for sidewalk delivery robotsThe rapidly growing online food delivery (OFD) market presents substantial logistical challenges for last-mile delivery operations. Sidewalk delivery robots (SDRs) have emerged as a promising alternative to on-demand workers, as these compact, box-sized robots efficiently deliver food or groceries over short distances via sidewalks. We propose a two-stage stochastic optimization model for a single-depot SDR system with integrated battery-swapping operations. In the first stage, a continuous approximation (CA) method determines the optimal fleet size and the required number of additional swappable batteries. The second-stage solutions are critical to facilitate the first-stage method. These involve solving a routing problem that incorporates battery-swapping decisions and penalties for late arrivals. To address this, we develop a customized heuristic based on adaptive large neighborhood search (ALNS) to generate high-quality solutions for the second stage. The fitted CA model integrates key factors, including time windows, battery swapping, and pickup-delivery orders. Numerical examples highlight the proposed approach’s efficiency in reducing computational time while maintaining solution accuracy. A case study and sensitivity analysis conducted on Purdue University’s campus illustrate the practical impacts of fleet size and the number of swappable batteries.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Pep-TCRNet is a novel approach to constructing a prediction model that can evaluate the probability of recognition between a TCR and a peptide amino acid sequence while combining inputs such as TCR sequences, HLA types, and VJ genes.Pep-TCRNet operates in two key steps:Feature Engineering: This step processes different types of variables:TCR and peptide amino acid sequencing data: The model incorporates neural network architectures inspired by language representation models and graph representation model to learn the meaningful embeddings.Categorical data: Specialized encoding techniques are used to ensure optimal feature representation for HLA types and VJ genes.Prediction Model: The second step involves training a prediction model to evaluate the likelihood of a TCR recognizing a specific peptide, based on the features generated in the first step.more » « less
-
Exploring features associated with the clinical outcome of interest is a rapidly advancing area of research. However, with contemporary sequencing technologies capable of identifying over thousands of genes per sample, there is a challenge in constructing efficient prediction models that balance accuracy and resource utilization. To address this challenge, researchers have developed feature selection methods to enhance performance, reduce overfitting, and ensure resource efficiency. However, applying feature selection models to survival analysis, particularly in clinical datasets characterized by substantial censoring and limited sample sizes, introduces unique challenges. We propose a robust ensemble feature selection approach integrated with group Lasso to identify compelling features and evaluate its performance in predicting survival outcomes. Our approach consistently outperforms established models across various criteria through extensive simulations, demonstrating low false discovery rates, high sensitivity, and high stability. Furthermore, we applied the approach to a colorectal cancer dataset from The Cancer Genome Atlas, showcasing its effectiveness by generating a composite score based on the selected genes to correctly distinguish different subtypes of the patients. In summary, our proposed approach excels in selecting impactful features from high-dimensional data, yielding better outcomes compared to contemporary state-of-the-art models.more » « less
-
T cells represent a crucial component of the adaptive immune system and mediate anti-tumoral immunity as well as protection against infections, including respiratory viruses such as SARS-CoV-2. Next-generation sequencing of the T-cell receptors (TCRs) can be used to profile the T-cell repertoire. We developed a customized pipeline for Network Analysis of Immune Repertoire (NAIR) with advanced statistical methods to characterize and investigate changes in the landscape of TCR sequences. We first performed network analysis on the TCR sequence data based on sequence similarity. We then quantified the repertoire network by network properties and correlated it with clinical outcomes of interest. In addition, we identified (1) disease-specific/associated clusters and (2) shared clusters across samples based on our customized search algorithms and assessed their relationship with clinical outcomes such as recovery from COVID-19 infection. Furthermore, to identify disease-specific TCRs, we introduced a new metric that incorporates the clonal generation probability and the clonal abundance by using the Bayes factor to filter out the false positives. TCR-seq data from COVID-19 subjects and healthy donors were used to illustrate that the proposed approach to analyzing the network architecture of the immune repertoire can reveal potential disease-specific TCRs responsible for the immune response to infection.more » « less
-
The T and B cell repertoire make up the adaptive immune system and is mainly generated through somatic V(D)J gene recombination. Thus, the VJ gene usage may be a potential prognostic or predictive biomarker. However, analysis of the adaptive immune system is challenging due to the heterogeneity of the clonotypes that make up the repertoire. To address the heterogeneity of the T and B cell repertoire, we proposed a novel ensemble feature selection approach and customized statistical learning algorithm focusing on the VJ gene usage. We applied the proposed approach to T cell receptor sequences from recovered COVID-19 patients and healthy donors, as well as a group of lung cancer patients who received immunotherapy. Our approach identified distinct VJ genes used in the COVID-19 recovered patients comparing to the healthy donors and the VJ genes associated with the clinical response in the lung cancer patients. Simulation studies show that the ensemble feature selection approach outperformed other state-of-the-art feature selection methods based on both efficiency and accuracy. It consistently yielded higher stability and sensitivity with lower false discovery rates. When integrated with different classification methods, the ensemble feature selection approach had the best prediction accuracy. In conclusion, the proposed novel approach and the integration procedure is an effective feature selection technique to aid in correctly classifying different subtypes to better understand the signatures in the adaptive immune response associated with disease or the treatment in order to improve treatment strategies.more » « less
-
null (Ed.)This paper considers off-street parking for the cruising vehicles of transportation network companies (TNCs) to reduce the traffic congestion. We propose a novel business that integrates the shared parking service into the TNC platform. In the proposed model, the platform (a) provides interfaces that connect passengers, drivers and garage operators (commercial or private garages); (b) determines the ride fare, driver payment, and parking rates; (c) matches passengers to TNC vehicles for ride-hailing services; and (d) matches vacant TNC vehicles to unoccupied parking garages to reduce the cruising cost. A queuing-theoretic model is proposed to capture the matching process of passengers, drivers, and parking garages. A market-equilibrium model is developed to capture the incentives of the passengers, drivers, and garage operators. An optimization-based model is formulated to capture the optimal pricing of the TNC platform. Through a realistic case study, we show that the proposed business model will offer a Pareto improvement that benefits all stakeholders, which leads to higher passenger surplus, higher drivers surplus, higher garage operator surplus, higher platform profit, and reduced traffic congestion.more » « less
An official website of the United States government
